Tribology of Ceramics in Different Environments

Andreas Kailer, Iyas Khader, Alexander Renz, Christof Koplin

Fraunhofer Institute for Mechanics of Materials IWM Wöhlerstraße 11 79108 Freiburg andreas.kailer@iwm.fraunhofer.de +49 761 - 51 42 2 47

www.mikrotribologiecentrum.de © Fraunhofer-Institut für Werkstoffmechanik IWM

AGENDA

- Short introduction
- Motivation: Application
- Wear analysis in rolling contacts
- Tribological behavior in ceramic cutting tools

Examples of current research topics

- Ceramics in cold and hot metalforming processes: New materials for improved lifetime and wear resistant components
- Ceramic cutting tools: Towards the understanding of tribological mechanisms in cutting operations

© Fraunhofer-Institut für Werkstoffmechanik IWM www.mikrotribologiecentrum.de

Ceramic rolling tools

- Ceramic tools and components for the fabrication of sheets, foils, wires and profiles
- Assessment of wear resistance and lifetime
- Optimization of surface loading capability
- Simulations (sintering, adhesion)
- Validation in industrial rolling processes
- Benchmarks lifetime prolongation were overmatched by a factor ~ 10

Ceramic materials and components for rolling mills

Ceramic rolling tools

- Ceramic tools and components for the fabrication of sheets, foils, wires, profiles
- Assessment of wear resistance and lifetime
- Optimization of surface loading capability
- Simulations (sintering, adhesion)
- Validation in industrial rolling processes
- → benchmarks for lifetime prolongation were overmatched by factor < 10</p>

Rolling of metal foils

(Sendzimir mill, MK Metallfolien, Hagen)

© Fraunhofer-Institut für Werkstoffmechanik IWM www.mikrotribologiecentrum.de

MIKROTRIBOLOGIE CENTRUM µTC

Consortium

Tribological behaviour of new ceramic materials

Aim:

Improve wear resistance and high temperature strength

- New material variations
- Influence of cooling lubricants

R_a: 0,08 μm, R_z: 0,15-0,2 μm

Wire rolls

Hot Rolling of Copper

Wire temperature ~840°C, Velocity ~2 m/s, cooling lubricant

Hot rolling of steel and Ni-base alloys

Wire temperature ca. 1050°C, velocity ~10 m/s, cooling lubricant

Bild: Böhler Edelstahl

© Fraunhofer-Institut für Werkstoffmechanik IWM www.mikrotribologiecentrum.de

Ceramic guiding rolls

Surface smoothening

10 times higher lifetime Steel rolls: 60 t wire Ceramic rolls: > 600 t

© Fraunhofer-Institut für Werkstoffmechanik IWM www.mikrotribologiecentrum.de

Tribochemical wear: Copper wire rolling

(A. Hashibon, J.-M. Albina, FhG IWM)

System	Work of separation (W _{sep}) [J/m ²]
Cu (111) / γ-Fe (111)	4.00
Cu (111) / β-Si ₃ N ₄ (0001)	2.72
Cu (111) / α-SiO ₂ (0001)	4.10
Cu (111) / [Cu ML , γ-Fe (111)]	3.30
Cu (111) / Cu (111)	3.08

ML: monolayer

Tribochemical wear: Copper wire rolling

www.mikrotribologiecentrum.de

MIKROTRIBOLOGIE CENTRUM µTC

Multiscale simulation to model degradation in ceramic components

EU-Project (2011 – 2014): IWM, KIT, IPM, ISFK, SKF, Böhler Edelstahl, FCT

Component testing: Wire rolling test rig

10 mm

© Fraunhofer-Institut für Werkstoffmechanik IWM www.mikrotribologiecentrum.de

15

MIKROTRIBOLOGIE CENTRUM µTC

Tribochemical wear and wire rolling

Ceramic rolls: Si₃N₄ - SL200 BG (oval-profile caliber) Wire: Steel 1.4310 Rolling temperature: ~900°C

Reduction: 0.3

Lubrication: Cooling lubricant (5% emulsion in water)

Tribochemical wear: Hot rolling of high strength steel

Hot rolling of high strength steel

Surface shear stresses in wire rolling

Complex sliding contact conditions in the deformaiton zone

Hot rolling of high strength steel

Hot rolling of high strength steel

© Fraunhofer-Institut für Werkstoffmechanik IWM www.mikrotribologiecentrum.de

Damage Characteristics → Reliability

microcrack formation an growth due to mechanical contact stresses

Damage Models

Mechanical stresses

tensile stresses

shear stress

Wear simulations

Experiments: Quantification of wear parameters

FE-Simulations: Stress state corresponding to modified contact conditions

www.mikrotribologiecentrum.de

Wear measurement

Wear Simulation

Ceramic Gears

Ceramics at High Temperature: Wear Mechanisms and Residual Stress Formation in Ceramic Cutting Tools

Motivation: Understanding the wear mechanisms of ceramic cutting tools

- Examination of degradation mechanisms of ceramic cutting tools
 - Chemical wear
 - Mechanical wear
 - Residual stress formation
- Model experiments
 - High temperature wear analysis

Ceramic Cutting Tools

- Ceramic cutting tools for high-speed-machining of high-temperature alloys
- Cutting speeds ≤ 1000 m/min cause extreme temperatures at cutting edges
- Temperature gradients and cutting forces affect tool wear significantly
- Improved wear resistance by adjustment of material composition and morphology
- Detailed analysis of structural and chemical interface transformations necessary

Typical wear marks on used cutting tools

Materials:

Selective wear of Si_3N_4 : Formation of amorphous Al_2O_3 and AIN layer

MIKROTRIBOLOGIE CENTRUM µTC

Mechanical wear of Al₂O₃/SiC

Analysis of built-up layer on SiAlON

Assumption:

Hafnia (HfO₂) and Alumina (Al₂O₃) built up on the tool surface

by diffusion of alloying Hf and by flow of SiAION glass phase

 \rightarrow Depletion of underlying microstructure

Static interaction couple: Sialon on Ni-base alloy (MAR M247)

10µm

Chemical/diffusive surface reactions after 1 h at low contact pressure (17.5 MPa) and high temperature (1300 °C, air)

32

Specimens and experimental setup

Simplification of specimen geometry and load situation

Experiment

Normal force:

© Fraunhofer-Institut für Werkstoffmechanik IWM www.mikrotribologiecentrum.de

Summary

Surface fatigue and chipping

Adhesive interaction of tool and workpiece material

Tribo-chemical degradation and transformation

- Temperature induced tribochemical wear was observed in both ceramics
- Reactivity of commercial SiAION with Hf-containing alloys
- Degradation of SiC at high temperatures
- Subsurface layers show fatigue cracks and residual stresses
- Wear rate and coefficient of friction of ceramic tools decrease with rising temperature

